Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.

نویسندگان

  • Maarten F Bobbert
  • L J Richard Casius
چکیده

The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m(-1) kg(-1) at 26 cm to 150 N m(-1) kg(-1) at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM(t) as only input. Correspondence between simulated hops and experimental hops was poor when STIM(t) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human hopping on damped surfaces: strategies for adjusting leg mechanics.

Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damp...

متن کامل

Height Control for a One-Legged Hopping Robot using a One-Dimensional Model

The hopping machine considered in this paper is like a pogo-stick; it has a small foot and a leg spring. Unlike a pogo-stick which uses a mechanical spring, the spring for the hopper is pneumatic. The controller is based on Raibert’s three-part control system [1]. Raibert controlled hopping height by delivering a specified thrust value during stance. This paper describes a model-based height co...

متن کامل

Interaction of leg stiffness and surface stiffness during human hopping

Ferris, Daniel P., andClaire T. Farley. Interaction of leg stiffness and surface stiffness during human hopping. J. Appl. Physiol. 82(1): 15–22, 1997.—When mammals run, the overall musculoskeletal system behaves as a single linear ‘‘leg spring.’’We used force platform and kinematic measurements to determine whether leg spring stiffness (kleg) is adjusted to accommodate changes in surface stiffn...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

Interaction of leg stiffness and surfaces stiffness during human hopping.

When mammals run, the overall musculoskeletal system behaves as a single linear "leg spring". We used force platform and kinematic measurements to determine whether leg spring stiffness (k(leg)) is adjusted to accommodate changes in surface stiffness (ksurf) when humans hoop in place, a good experimental model for examining adjustments to k(leg) in bouncing gaits. We found that k(leg) was great...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 366 1570  شماره 

صفحات  -

تاریخ انتشار 2011